Counting Cells in Time-Lapse Microscopy using Deep Neural Networks

نویسندگان

  • Alexander Gómez Villa
  • Augusto Salazar
  • Igor Stefanini
چکیده

An automatic approach to counting any kind of cells could alleviate work of the experts and boost the research in fields such as regenerative medicine. In this paper, a method for microscopy cell counting using multiple frames (hence temporal information) is proposed. Unlike previous approaches where the cell counting is done independently in each frame (static cell counting), in this work the cell counting prediction is done using multiple frames (dynamic cell counting). A spatiotemporal model using ConvNets and long short term memory (LSTM) recurrent neural networks is proposed to overcome temporal variations. The model outperforms static cell counting in a publicly available dataset of stem cells. The advantages, working conditions and limitations of the ConvNet-LSTM method are discussed. Although our method is tested in cell counting, it can be extrapolated to quantify in video (or correlated image series) any kind of objects or volumes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Convolutional Neural Networks for Human Embryonic Cell Counting

We address the problem of counting cells in time-lapse microscopy images of developing human embryos. Cell counting is considered as an important step in analyzing biological phenomenon such as embryo viability. Traditional approaches to counting cells rely on hand crafted features and cannot fully take advantage of the growth in data set sizes. In this paper, we propose a framework to automati...

متن کامل

Face Recognition across Time Lapse Using Convolutional Neural Networks

Time lapse, characteristic of aging, is a complex process that affects the reliability and security of biometric face recognition systems. This paper reports the novel use and effectiveness of deep learning, in general, and convolutional neural networks (CNN), in particular, for automatic rather than hand-crafted feature extraction for robust face recognition across time lapse. A CNN architectu...

متن کامل

TimeLapseAnalyzer: Multi-target analysis for live-cell imaging and time-lapse microscopy

The direct observation of cells over time using time-lapse microscopy can provide deep insights into many important biological processes. Reliable analyses of motility, proliferation, invasive potential or mortality of cells are essential to many studies involving live cell imaging and can aid in biomarker discovery and diagnostic decisions. Given the vast amount of image- and time-series data ...

متن کامل

Using Deep Learning for Segmentation and Counting within Microscopy Data

Cell counting is a ubiquitous, yet tedious task that would greatly benefit from automation. From basic biological questions to clinical trials, cell counts provide key quantitative feedback that drive research. Unfortunately, cell counting is most commonly a manual task and can be timeintensive. The task is made even more difficult due to overlapping cells, existence of multiple focal planes, a...

متن کامل

Integration of remote sensing and meteorological data to predict flooding time using deep learning algorithm

Accurate flood forecasting is a vital need to reduce its risks. Due to the complicated structure of flood and river flow, it is somehow difficult to solve this problem. Artificial neural networks, such as frequent neural networks, offer good performance in time series data. In recent years, the use of Long Short Term Memory networks hase attracted much attention due to the faults of frequent ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1801.10443  شماره 

صفحات  -

تاریخ انتشار 2018